
Reading to Write Code: An Experience Report
of a Reverse Engineering and Modeling Course

Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek
{brooke.ryan,amezasor,kdreef,andre}@uci.edu

Department of Informatics
University of California, Irvine

Irvine, CA, U.S.A

ABSTRACT
A substantial portion of any software engineer’s job is reading
code. Despite the criticality of this skill in a budding software en-
gineer, reading code—and more specifically, techniques on how
to read code when integrating oneself into a large existing soft-
ware project—is often neglected in the typical software engineering
education. As part of a new professional Master of Software En-
gineering at the University of California, Irvine, we designed and
delivered a “reading to write code” course from the ground up.
Titled Reverse Engineering and Modeling, the course introduces
students to techniques they can use to become familiar with a large
code base, so they are able to make meaningful contributions. In
this paper, we briefly introduce the Master program and its underly-
ing philosophy, articulate the course’s learning outcomes, present
the design of the course, and provide a detailed reflection on our
experiences in terms of what went well, what did not go well, what
we do not know yet, and what our next steps are in preparing for
the forthcoming incarnation of the course in Spring 2022. In so
doing, we hope to provide a baseline together with lessons learned
for others who may be interested in instituting a similar course at
their institution.

KEYWORDS
Reading code, software understanding, large open source systems

ACM Reference Format:
Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek. 2022.
Reading to Write Code: An Experience Report of a Reverse Engineering and
Modeling Course. In 44nd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET ’22), May 21–29,
2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3510456.3514164

1 INTRODUCTION
In his essay “Reading to Write”, author Stephen King famously
advises aspiring writers:

If you want to be a writer, you must do two things above
all others: Read a lot and write a lot. There’s no way

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9225-9/22/05.
https://doi.org/10.1145/3510456.3514164

around these two things that I’m aware of, no short-
cut. [26]

The same could be said for writing software. Indeed, the point is
frequently made by professional programmers on all sorts of fora
(e.g., [10], [36], [41]).

In this context, it is interesting to observe that existing curricula
in software engineering, or computer science more broadly, remain
largely silent on the topic. Introductory courses may include exer-
cises in reading code so to become familiar with language syntax
and program structure, and capstone courses may implicitly expect
students to read code when they work on a large-scale legacy or
open source system, yet reading code as a fundamental topic of
explicit and sustained focus throughout a course appears elusive.

In the context of a new professional Master program in Software
Engineering at the University of California, Irvine, the need for
a full-fledged “Reading to Write Code” course was identified as a
necessary part of the curriculum. Initially, we thought that develop-
ment of such a course could take inspiration from similar courses
elsewhere, as we thought that, surely, such courses exist. Despite
our best efforts searching, however, both with Google and through
our personal network of contacts, we did not find any. As a result,
we designed and delivered the course from the ground up, titling
it Reverse Engineering and Modeling for reasons to be discussed
later.

In so doing, we had to decide upon the overarching philosophy of
the course. Stephen King expanded on his famous quote as follows:

So we read to experience the mediocre and the outright
rotten; such experience helps us to recognize those things
when they begin to creep into our own work, and to steer
clear of them. We also read in order to measure ourselves
against the good and the great, to get a sense of all that
can be done. And we read in order to experience different
styles.

Developing an equivalent such sense for coding is not as straight-
forward as reading a novel, nor as convenient as opening up a
book whilst on the treadmill (as King later recommends). One ap-
proach to the challenge of course design may be from a fine arts
perspective, as advocated by Gabriel [19], wherein students ex-
amine existing code, discussing its merits and shortcomings, and
build up a repertoire of coding craftsmanship examples that are
excellent, very nice, good enough, mediocre, and bad. We could
also think about it from the perspective of learning how to code,
as in a reading-focused introduction preceding any programming.
Neither perspective, however, aligns well with the nature of the
overall program. The former necessitates smaller classes and stops
short of giving the students concrete experiences that can be put on

https://doi.org/10.1145/3510456.3514164
https://doi.org/10.1145/3510456.3514164
https://doi.org/10.1145/3510456.3514164


ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek

their resume, which, as a professional Master program, is a must.
The latter does not align well with the incoming cohorts: in being
a graduate program, the admission requirement is for them to have
programming experience, whether through a formal education or
informally acquired (e.g., self taught, bootcamp).
We, thus, settled on a third perspective: the pragmatic, profes-

sionally oriented objective of learning how to read the code of an
existing, large-scale system to become an effective contributing mem-
ber of its community. While all students entering the Master have
prior programming experience, few have experience with what they
are likely to encounter when they graduate: an existing, large-scale
system that has been worked on for years by numerous developers
who have established practices of how to work together. The course,
then, sought to give the students such an experience in a single
quarter (10 weeks), as anchored by theory and practice in reading
code.

This paper presents our experiences in designing and delivering
the course. It is based on the second offering of the course, as the
first led to a number of improvements that we feel have created a
stable base fromwhich to move forward.1 The paper is intentionally
structured as an experience report: our aim is to share the design
of the course and discuss what went well and what did not go well.
The remainder of this paper is organized as follows. Section 2

briefly reviews relevant background material. Section 3 introduces
the Master of Software Engineering program and its overarching
positioning as a degree program. Section 4 presents the learning
outcomes that we set in creating our course, while Section 5 ar-
ticulates how we sought to address those learning outcomes in
the pedagogical design of the course. Section 6 reflects on our ex-
perience in delivering the course with a series of lessons learned.
Section 7 concludes the paper with an outlook at our future work.

2 BACKGROUND
A substantial portion of any software engineer’s job is reading
code [31]. In a typical day, they may read code to understand where
to fix a bug or add a feature, how someone else has implemented
some functionality, or to resolve a merge conflict. They may also
need to read code outside of the project to which they are contribut-
ing, in order to understand how to use a particular library or to
investigate which of several libraries suits their goals better.
In Begel and Simon’s 2008 study of college graduate software

engineers at Microsoft[9], newly hired developers were observed
to have significant difficulty in the technical and social nuances
of integrating with existing large systems, a skill that participants
acknowledged was not taught to them at university. More recent
studies on newcomers to large software systems confirm and ex-
pand these findings, observing that individuals not only struggle
with the code, but also encounter significant challenges in terms of
the social context in which they are operating (e.g., [8], [42], [43]).

How exactly software developers read code in practice, then, has
become of significant interest to the software engineering research
community. While a comprehensive review is out of scope, Sillito et

1Note that the first incarnation was in person while the second was, due to COVID-19,
online. The online course, however, was still delivered live, with in class exercises,
in class reflection on the exercises, guest speakers, and more, much as it would have
been had it been in person. As such, we do not believe that the remainder of what we
discuss is particularly colored by the experience of teaching online.

al. [39] studied the kinds of questions developers ask ‘of the code’;
that is, what are the kinds of things that they want to know? As an-
other example, Roehm et al. [37] performed an observational study
of 28 developers to identify the strategies they follow in building
their understanding of the code. LaToza et al. [27] examined how
developers build and maintain their mental models of the code, with
a key observation that they often rely on asking one another to fill
in missing knowledge. More recently, too, several studies have used
fMRI techniques to study the cognitive processes of programmers
at work (e.g., [18], [22],[25]). Information foraging theory, perhaps
the most well-known distillation of the aforementioned observa-
tions, essentially likens the search for information in the source
code to an animal’s hunt for its prey – both try to optimize the
energy expended versus the expected payoff [16, 32].
Much work has gone into the design of novel tools to facili-

tate program comprehension. Examples include techniques that
summarize methods to make them easier to digest (e.g., [17]), ad-
vanced visualizations (e.g., Code City [45]), tools that help main-
tain mental models [27], and tools supporting specific tasks (e.g.,
Tarantula [23]). While these are important in their own right, we
consider them to be too specific and advanced for purposes of our
class. Therefore, we introduce IntelliJ plug-ins such as Call Graph
[4] and sequenceDiagram [5] that are more standard, opting to then
point the students to more advanced tools in the extra materials to
explore independently.

For other topics in the course (e.g., patterns, social context, mod-
eling), the story is much the same. A great amount of research
exists around them; each, in many ways, is represented by an en-
tire subfield of software engineering research. We again chose to
structure the course as introducing the foundations upon which
the students later, on their own during the course or after they have
entered industry, can explore the more advanced and nuanced body
of knowledge that may assist them in their jobs or provide more
insight into what they do on a day to day basis.
While constructing our course, we surveyed the literature on

related course work, and found that courses focus on either: (1)
code reading as a necessary component, or (2) experience with
open-source systems. Several studies on programming coursework
have indicated the importance of providing a curriculum on code
reading comprehension (e.g.,[10],[11]). Hillburn et al. [21] in par-
ticular advocate for active learning pedagogical methods in code
reading, which is precisely what we offer at the level of a profes-
sional Master program and as applied to large scale open source
systems. In regards to leveraging open source projects, even prior
to the inception of GitHub in 2008, courses sought to use active,
publicly available software systems as an educational tool [7]. The
use of open-source for courses like capstones has become very pop-
ular in software engineering curricula (e.g., [14], [28], [33]). Smith
et al. [40] cite the difficulties inherent in screening sufficiently com-
plex and active open-source systems suitable for student projects,
a sentiment we also found to be true.
The Software Architecture course at TU Delft [44], was most

influential to the development of our course and shares a number
of similarities in its approach. Both courses include the use of team-
based open-source software projects, an emphasis on a balance
of technical and social skills, and requiring students to contribute
to their project via pull requests. However, the TU Delft course



Reading to Write Code: An Experience Report
of a Reverse Engineering and Modeling Course ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

remains anchored in software architecture, culminating in an online
booklet describing architectural principles of the chosen project.
Our course does touch upon software architecture, but strongly
focuses on the theme of “reading to write” and giving students
practical ways of reading and understanding a large code base.

3 CONTEXT
Our Reverse Engineering and Modeling course is part of the new
professional Master of Software Engineering degree program that
was launched Fall 2019 with the arrival of the first cohort of stu-
dents. The program is an “advanced 15-month professional degree
program designed to train software engineers coming from a variety
of backgrounds” [2]. The program’s course sequence and pedagogy
were constructed to not only welcome those who already have
obtained an undergraduate degree in some form of computing, but
also those who had a different education, acquired some initial pro-
gramming skills, and are interested in switching careers to software
engineering. The program accomplishes these goals through an in-
tensive set of first-quarter, programming-oriented mini courses in,
among others, applied data structures and programming, database
programming, GUI programming, and applied data analytics. Stu-
dents are advised and coached on the mini-courses they are taking.
Advanced students benefit by polishing their skills and being able
to dive deeper into more advanced topics; novice students benefit
from quickly getting up to speed in the basics, so they catch up
sufficiently to the more advanced students in the core topics. The
result has been a cohort of 35 students in year 1, with 22 students
(63%) career changers, a cohort of 46 students in year 2, with 16
students (35%) career changes, and a cohort of 57 students in year
3, with 35 students (61%) career changers. All but one student from
the first cohort successfully graduated (with the other finishing up
part-time this quarter) and all but three students from the second
cohort are on track to graduate according to schedule this quarter.

Table 1 provides an overview of the full curriculum, which also
mandates a supervised internship in the summer between Quarters
3 and 4. Each of the courses in quarters two through four is required;
all students take these courses in lockstep with one another. The
Reverse Engineering and Modeling course is offered in Quarter 3,
intentionally later in the curriculum so that it can build on prior
experiences. It particularly relies on material in the Distributed
Software Architectures course, because many of the open source
systems encountered in the Reverse Engineering and Modeling
course are distributed in nature. The course also builds on the prior
Software Testing and Debugging course by using test cases as a
tool to understand code (as we shall discuss later in Section 5.3,
week 8).

The course is strategically offered before the summer internship
and Capstone Project, as students are likely to encounter existing
systems to which they will be expected to contribute in both. In the
summer, it will be at whichever company that hosts their internship
(examples have been Oracle, Kaiser Permanente, Facebook, Uber,
and SAP) and in the Capstone Project, it will be through whichever
outside entity acts as their project sponsor (examples have been
Expedia, Apple, Blizzard Entertainment, Sony, and Oppo). In ei-
ther case, the systems they work with tend to be large and they
have to become familiar quickly to make meaningful contributions

throughout the short period of 10 weeks in either. This is what the
Reverse Engineering and Modeling course prepares them for.
The student body in the Master program is relatively diverse.

In addition to having a large percentage of career changers (see
above), 33%, 41%, and 43% were female across the three cohorts, and
5% consistently year after year were under-represented minorities.
The latter is a percentage that we are actively seeking to increase.

Finally, a note on why the course is titled Reverse Engineering
and Modeling instead of Reading to Write Code, or some variant
thereof. The reason is primarily historic, as the creation of new
degree programs is a multi-year effort at our institution with many
steps of discussion and approval. The original concept of the course,
when the proposal to the campus for a new degree program was
conceived, had elements of understanding code in it (therefore the
Reverse Engineering part of the title) as well as a fairly strong
doses of design work (hence the Modeling part). When the actual
classes were to be developed, it became clear that some but not
all of the design content could usefully be moved to other courses,
meaning that this course could more strongly focus on the reading
and understanding code aspects.

4 LEARNING OUTCOMES
The overarching goal of the course is to educate students in specific
techniques of reading the code of an existing, large-scale system
so to become an effective contributing member of its community.
Underlying this goal is our desire to thereby lower the psychological
barrier involved in having to approach an unfamiliar, large-scale
code base. Many of the students in the program—especially those
who are switching careers and do not have a formal education in
computing—have never encountered a large-scale system before.
To them, the thought of having to actually make sense of something
that is so large that they cannot feasibly print or read it all, let alone
be tasked with making changes, is daunting.
Towards this goal and desire, then, we identified a set of eight

concrete learning outcomes that governed the design of the course.
Learning outcome 1. Be able to find where some function-

ality is implemented. A core task that any software developer
faces is to figure out where in the code base some feature is im-
plemented, so they can augment that feature or fix a bug in its
behavior. In a large code base, this can be quite challenging and
take significant time and effort. A core reading skill to develop,
then, is to be able to locate the lines of code or, at a larger scale,
those parts of the code where certain functionality is realized.

Learning outcome 2. Be able to apply different strategies
to understanding code. Watching professionals at work making
sense of a code base can feel daunting and at the same time haphaz-
ard as theymove through the code base andmake inferences at what
appears lightning speed. Underneath their approaches, however,
are common strategies for how they choose to navigate and what
they choose to look at. We want our students to understand that
such strategies exist and apply different ones when so applicable
to the task at hand.

Learning outcome 3. Be able to leverage information that
comes from many sources. The code base itself is not the only
source of relevant information when it comes to understanding it.
Comments, design documents, issues in the issue tracker, test cases,



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek

Table 1: Master of Software Engineering Curriculum.

Quarter 1 Quarter 2 Quarter 3 Quarter 4
Programming courses Programming Styles User Experience and Interaction Career and Entrepreneurship

(six total) Distributed Software Architectures Reverse Engineering and Modeling Project Management
Software Testing and Debugging Software Security and Dependability Capstone Project

API documentation, and indeed people are among the many poten-
tial sources that one can and should rely upon when approaching a
new code base (and often also when approaching a new part of a
code base with which one is partially familiar).

Learning outcome 4. Be able to work with the reality that
external information is not in sync with the latest version
of the source code. While external information can be extremely
valuable (conform the previous outcome), it is crucial for students
to understand that it cannot be taken as an absolute truth, for the
simple fact that it often becomes out-of-date over time. That said,
there still can be significant partial value, but one should always
be skeptical and check with the source code as to whether what is
being documented is still accurate in the latest version of the code.

Learning outcome 5. Be able to contribute while adhering
to the unique social context of a software system. In order to
make actual contributions to a software system, it is important to
adhere to the broader social context in which it is being developed.
Just submitting a pull request is insufficient; one should do so
according to the coding, documentation, and process standards that
are expected – whether those standards are explicitly documented
or are part of an informal culture that has emerged and has to be
learned informally. Moreover, when interpersonal interaction is
needed (as it often is when the initial pull request is returned with
requests for improvement), it is similarly important to be able to
follow the social conventions of the project.

Learning outcome 6. Be able to assess the value of existing
code. A tendency especially among newcomers is to think that one
can do better than the current code and, thus, to want to rewrite
or to talk unfavorably about the code. This misses the point, as
existing code carries with it a lot of history and implicit knowledge
that must be honored, since it is shaped as it is through careful
deliberation by those developers who came before. We want our
students to understand this and learn how to make changes only
when absolutely needed.

Learning outcome 7. Be able to make meaningful contri-
butions.While reading code for one’s own learning is an important
practice, ultimately, the expectation of the future employers of our
students will be that they will actually engage in furthering the
software on which they are working. As part of our course, then,
we want them to practice making actual changes to a large-scale
software system that is not their own.

Learning outcome 8. Be able to use tools where and when
so needed. Reading code and making changes to it is a cognitive
intensive and often largely manual task. That said, many different
tools exist that can ease the task, at least to a degree. We want our
students to develop a basic understanding of what kinds of tools
exist and what kind of value these can bring.

Not a learning outcome, but a major secondary goal in the course
design was to structure projects such that they become resume

items that can carry weight with potential recruiters and inter-
viewers. We sought to provide valuable and relevant experience
in that regard by designing the course such that students become
familiar with a real, large scale software system, study it from a
variety of angles (including code, architecture, patterns, issues, and
test cases, as we will see below in Section 5.3), and actually make
and submit pull requests that are taken under consideration by the
project developers. We believe that demonstrating in interviews
that they learned and applied a principled approach to an unfa-
miliar system, integrated with their project’s social context, and
ultimately contributed a piece of code to the system, gives them an
important advantage in securing a future position.
Finally, it is important to note what this course is not. It was

expressly not our goal to integrate the latest and greatest research
results and especially not the many research tools that exist for
reverse engineering, program comprehension, software visualiza-
tion, and more. While these research tools are important, we felt
that for purposes of this course we should stick with the more
basic tools that we know the students could bring into and use in
any organization. The course is also not a perfect recipe. While
various strategies are offered, many heuristics and techniques are
discussed, ultimately, the success one has in reading code depends
as much on the system under study as on one’s own personal skills.
We want the students, thus, to complete the course with a realistic
understanding of both the possibilities and the challenges involved.

5 COURSE DESIGN
With these learning objectives in mind, we settled on a course
design in which students assemble into small teams, with each team
adopting a single, large scale open source project that becomes their
practice ground for the duration of the class. With each week of new
material, we move from reading and understanding increasingly
complex aspects of the system to eventually making code and other
contributions, as further detailed in Section 5.3.
In some ways, the guided exploration that results represents a

typical onboarding experience [24]. In other ways, our approach de-
viates. First, it spends more than a few weeks reading only, whereas
in the typical onboarding experience the focus is on making small
contributions as early as possible. Second, in onboarding, new em-
ployees are typically paired with more senior colleagues who guide
them; such colleagues are absent here. Finally, while in onboarding,
a new employee is often familiarized with a small part of the system
and then spends considerable time there honing their skills, in our
course we intentionally engage the students with different parts of
their systems and at different levels of abstraction.

In the sections below, we first briefly introduce the overall peda-
gogy we applied throughout the course. Then we detail the basic
structure to which each lecture adhered, before we introduce and
discuss the full set of topics week-by-week.



Reading to Write Code: An Experience Report
of a Reverse Engineering and Modeling Course ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

5.1 Overall Pedagogy
We adopted an active learning [12] approach, with some lecturing
of the underlying basic theory and time allotted to practice the
theory on a small example code base during lecture. Given that
lectures were once a week for three hours, this not only enabled
students to connect with the material in a hands-on manner, but
also allowed for the three-hour block to not be a single, monotonous
monologue of new material.

In addition, we adopted a philosophy of not teaching the students
everything they need to know. Instead, we focused on introducing
the concepts, with the students being responsible for digging deeper
as needed. When discussing software patterns, for instance, we
introduced what patterns are and what they are good for with
the help of two example patterns. We then pointed students to
resources where they could read more about patterns and study
additional patterns on their own. The assignments from week to
week would lean not just on what was discussed in lecture, but
also force them to engage with the additional material. In the case
of software patterns, for instance, the assignment was to identify
five different patterns in the software being studied, requiring the
students to go beyond the two that were discussed in lecture and
self-learn about others.

We also considered teamwork essential, given that the vast major-
ity of graduates end up in positions where they function as part of
a larger team. While we could have randomly assigned the students
to teams, we decided to let them choose teams based on mutual
interest in terms of the domain of the software they study. We did so
for two reasons. First, by allowing students to choose a software sys-
tem in a domain of interest (e.g., Bitcoin related, database related,
genomics related), we give them a more meaningful experience
with respect to future interviews and job opportunities. Second,
by assembling teams based on interest rather than on friends, we
still achieve a reasonable amount of working with new people. All
teams consisted of four or five students.
Finally, we wanted to ensure that the course content reflected

the real world. We therefore engaged in two critical steps. First, we
surveyed a large number of alumni from our other programs before
designing the course, asking what they considered relevant and
important content, how they personally went about navigating an
unknown code base, what tips and tricks they might have, and what
skills they think are necessary for students to possess at completion
of the course. We used the collective responses to determine the
topics being taught. Second, we brought in weekly guest speakers,
who complemented the lectures with professional perspectives
(e.g., a Google employee walked through an actual code review on
real Google code; a ZocDoc employee showed bad code they had
written and what consequences it had; an alumnus who founded
a successful start-up talked about how students could parlay their
experiences in the course into strategies for interviewing).

5.2 Basic Structure of Each Lecture
While the topic of the course varied each week (see Table 2, as
discussed in detail in the next subsection), we structured the lectures
to follow a common pattern that we briefly introduce and motivate
here. Table 3 summarizes the common pattern.

First, we started each lecturewith a few quotes from professionals
in the real world, as collected in our conversations with our alumni.
Each week, we selected the quotes to match the topic of the ensuing
lecture. For instance, one of the quotes preceding the lecture on
mental models is from a Research Staff Member at the MIT-IBM
Watson AI Lab:

Often I use a debugger to understand information flow
and a diagramming tool to help me build a mental model
of the system.

As another example, the following quote is from a Senior Software
Engineer at ZocDoc, a quote that we used to open the lecture on
leveraging test cases as a way of understanding source code:

When you are ready to dig into more low-level details,
check existing unit/integration tests. Run them to verify
your own understanding of each part of the system. If
there are no tests, try to write them yourself, you will do
a public good and it will increase your understanding of
how differently pieces work independently and together.
By all means, make sure there is enough test coverage
before you modify any of the code!

These quotes served as the basis for a brief class discussion based on
the instructor asking the students to interpret the quote and explain
what they think it may mean. This helped both in establishing the
validity of the topic as relevant to their future profession and in
setting the expected level of engagement for the subsequent lecture.
The overall set of quotes at our disposal proved remarkably relevant
to the course, with a multitude to choose from for each topic.

Following the quotes, we briefly recapped the topic of the prior
lecture. After, we revisited the project assignment from the prior
week to debrief on the experience: what went well for the teams,
what represented hurdles, and what did they learn? It was in this
debrief that a significant amount of learning across projects took
place. Students heard the experiences of other teams, for instance
when one team shared of their open source project being ran by a
particularly voracious maintainer who would close issues lightning
fast (leaving none for the team) or when another team explained
why they found it difficult to precisely articulate the boundaries of
where a feature was and was not implemented in a system. These
experiences sometimes led to sympathy being expressed (as in the
former case), but nearly always resulted in discussion that expressed
recognition and validation—other teams would experience similar
issues in their projects—as well as suggestions for how to handle
the situation.
We then switched to the topic of the week, usually introducing

the underlying theory for about thirty minutes. For the lecture
on basic strategies of code navigation, for instance, we introduced
the students to both typical strategies (top-down comprehension,
bottom-up comprehension, systematic comprehension, opportunis-
tic comprehension, per [13]) as well as information foraging the-
ory [16, 32] to explain why different situations may call for a dif-
ferent approach.
Immediately after introducing the theory, the lecture switched

into short practical exercises where applicable. Students performed
these exercises in randomly-assigned teams, with their output being
captured through Jamboard [35] so that the instructor could bring
up any of the random teams’ results to discuss in class. The primary



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek

Table 2: Course Design.

Week Interactive lecture In-class Practice Team Project Work
1 Course goals Baseline questions and brainstorming Setup environment

Course logistics Build sample systems
Expectations for engagement Form team

2 Basic comprehension strategies JPacMan (fix) Choose a system >100KLOC
Information foraging theory JPacMan (change)
Hypothesis-driven vs. inference-driven JPacMan (learn)

3 Mental models JPacMan (locate a feature) Locate a feature (alone)
Mental simulation JPacMan (understand a feature) Locate a feature (together)

4 Externalizing mental models Class diagram of entire system
Structural versus behavioral modeling Locate two essential features
UML Document those features

5 Social context Brainstorm how you would discover Choose three open issues (alone)
Code change principles Imagine you are a core developer Choose three open issues (together)

Answer social context questions
6 Midterm
7 Design patterns JPacMan (factory) Identify five design patterns

JPacMan (observer) Code your first issue
JPacMan (should we refactor) Submit pull request

8 Reading test cases JPacMan (Board test cases) Write three test cases
Running test cases JPacMan (LevelTest) Submit a pull request for each
Writing test cases Start working on two more issues

9 Design cycle Traffic (brainstorm interfaces/classes) Model a new feature
Design principles Traffic (most important/difficult questions)

Traffic (actually design it)
10 Design principles (revisited) Traffic (instructor demonstration) Submit final two pull requests

History
11 Final (optional)

Table 3: Structure of a Typical Lecture.

Topic Duration Purpose
Quotes from professionals 5 minutes Orient students to the real world concerns of this lecture
Recap theory from last week 5 minutes Ensure prior materials are understood
Reflection on last week’s project assignment 15 minutes Share insights across teams to learn from each other’s experiences
Theory 30 minutes Provide foundational knowledge on this week’s topic
In-class exercises 50 minutes Practice with a small-scale system and discuss experiences
Tools (as applicable) 10 minutes Introduce automated support that eases the task at hand
Readings and resources 5 minutes Offer pointers to further background reading and free online resources
Expert practices 10 minutes Provide vignettes capturing typical behaviors of experts
Project assignment 5 minutes State and clarify expectations for the team project for the upcoming week
Guest speaker 45 minutes Learn from a professional, their work, and insights

open-source system we used for these exercises was JPacMan, a
small Java project that was designed and built at TU Delft for educa-
tional purposes [46]. For the lecture on test cases, for instance, the
first exercise was for the students to write down what they learned
and what open questions remained after reading the test cases for
a particular subpart of the system and juxtaposing those test cases
with the code. To the students, this was an eye-opening experience
as they already had been working with JPacMan for weeks and
thought they understood it well; using the test cases put some as-
pects of the system and how it worked in a new light, particularly
illuminating to the students was that their understanding thus far

had been at a higher level that obfuscated important details. As
another example, Figure 1 presents two Jamboards resulting from
the exercise in lecture 3 where we asked the random student teams
to draw a (mental) model of where scoring is implemented in JPac-
Man. Note the two very different approaches, which led to a class
discussion of what the different teams were trying to capture and
why. Note also the embellishments in the second Jamboard, which
we take as a strong sign of student engagement. Indeed, these kinds
of embellishments became part of the class culture when using
Jamboard with a friendly competition as to who could get theirs
acknowledged by the instructor.



Reading to Write Code: An Experience Report
of a Reverse Engineering and Modeling Course ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

(a)

(b)
Figure 1: Two Jamboards Produced in Lecture 3.

Crosscutting the theory and in-class practical exercises, we intro-
duced useful tools when so appropriate. We required the students
to use IntelliJ, which they were already familiar with but did not
know how to use to the fullest extent. We introduced the students
on how to follow call sequences using the native features of IntelliJ
and also introduced them to a variety of plug-ins, including Git
[1], Statistic [6], Call Graph [4], and sequenceDiagram [5]. We also
showed them how to use the UML features of IntelliJ Ultimate,
which was freely available to them by virtue of being a student.

Rounding out the lecture component each week, we provided
pointers to additional reading and the introduction of a few expert
practices drawn from the Software Design Decoded book [34], as
adapted to code reading. These practices mirror observed behaviors
of expert software designers (e.g., focus on the essence, dig as deep
as needed, externalize their thoughts) and serve as a benchmark
for students to ask themselves and their team whether they are
engaging in their project in ways that professionals would expect
them to engage.

We then gave students their homework assignment for the week,
according to the schedule shown in Table 2. An important compo-
nent of the homework was that the students needed to maintain
a personal diary, logging when they worked on anything related
to the course, who they worked with on that activity (so we could
verify team participation if issues started to arise in a team), and
what new insights they gained from engaging in the activity. This
to expressly insert a reflective step in their learning process.

Finally, we introduced the guest speaker, who would talk to the
students for a planned 45 minutes, but often an hour or longer as
some subset of students would stick around past the time allot-
ment for the course to ask questions and hear more stories from
the trenches. Some of the guest speakers had prepared materials
beforehand, others talked off the cuff, and yet others were content
with a brief introduction and then answering questions. Among
the materials, beyond the two we already mentioned (code review,
bad code), a guest pair brought a Lua-based software defined ra-
dio software that they reverse engineered with the students and
another guest speaker talked of the issues the had to deal with
when working on a large-scale legacy software project written in
Filemaker Pro.

5.3 Week-by-Week Topics
Table 2 presents the week-by-week structure of the course, particu-
larly highlighting the primary topics of each lecture, the in-class
practice associated with those topics, and the team-based project
assignments for each upcoming week. Below, we discuss each week.

Week 1: Introduction. In the first week, we welcomed the stu-
dents and introduced the course by articulating its goals, sharing
the logistics as to how it would unfold, and setting our expectations
for engagement in that the class is interactive, requires their par-
ticipation throughout, and will call upon them and their thoughts
continuously. We also explained the tenor of the course, that we
expect them to be overwhelmed at first at the sheer scale of the
system they will be studying (the actual requirement is 100,000
lines of code or greater), that we expect there to be surprises, and
that we understand the work involves a lot of tedious, low-level
engagement with the code base. At the same time, we explained
that we view the project as a learning experience and that we pro-
vide important scaffolding for them to successfully engage. We also
asked for their patience, in that what is frustrating and seemingly
impenetrable at first becomes much clearer later, with them mak-
ing actual contributions to the system. By communicating all this
up-front and repeating it throughout the course in the context of
their progress, we gained the students’ trust.
As a first interactive exercise, we went through four Jamboard

sessions, each requiring random teams of students to address a
prompt. These prompts were, in order: (1) what are some reasons
that we need to read and comprehend source code, (2) what is the
largest piece of software you have worked on, (3) give examples
of when it was easy to read, understand, and perhaps modify a
piece of code, and (4) give examples of when it was difficult to do
so. This exercise served to set the tone for future lectures and their
interactive nature, but also helped benchmark their initial thoughts
and prior experiences.

As their homework, each person was to individually install Intel-
liJ with plug-ins and attempt to download and build a few example
systems, so to become familiar with how to do so. The students, too,
were instructed to form teams around areas of common interest.

Week 2: Basic strategies. In the second week, we introduced
four strategies for reading code: top-down comprehension, bottom-
up comprehension, systematic comprehension, and opportunistic
comprehension, per [13]). Moreover, we discussed the difference
between being at least somewhat familiar with the code (or with



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek

similar code) and not being familiar. In the former case, the process
typically becomes driven by a hypothesis, with the reader searching
for beacons that serve as anchors for the hypothesis [38]. In the
latter, the process typically becomes inference driven with the
reader attempting to chunk smaller bits of understanding into larger
behaviors [38]. We then explained the importance of being aware of
how one goes about the reading and interpretation process, and that
information foraging theory [16] presents a empirically validated
conceptual framework for how to think about their actions and
how, as they progress with a task, they may well change strategies.

We then introduced—unbeknowst to students—an altered version
of JPacMan and asked them to engage in three tasks: (1) fix a bug
in how PacMan moves, (2) change the amount earned per pellet,
and (3) figure out how JPacMan animates its characters. Each task
was performed by random teams, with Jamboards as their canvases.
After each task, the instructor would use the Jamboards to initiate
impromptu discussions highlighting differences in findings, how the
teams went about the respective tasks, and how their approaches
fit into the strategies we introduced prior.

As homework, the team had to choose a system of 100,000 lines
of code (LOC) or greater that adhered to a number of criteria: the
presence of an issue tracker, at least 10 new pull requests over the
past month, and being of shared interest to the team. In addition,
the system could not be a standalone library, in order to ensure that
the project was of sufficient complexity (many libraries are ’flat’ or
have strongly independent pieces of functionality).
We encouraged the students to pick a project that aligned with

their professional software engineering goals and interests. While
the vastmajority of selected projects were ultimately Java-based (we
believe this is because prior courses are primarily taught in Java),
the students selected projects that spanned a variety of technologies
and interests. Systems of choice included a 3D game engine (JMon-
keyEngine), a Bitcoin exchange platform (Bisq), an Android podcast
mobile application (AntennaPod), and a citation and reference man-
ager (JabRef). One team expressed a desire to incorporate Python
into their professional repertoire, and chose to work on a YouTube
download manager implemented in that language (youtube-dl).

The teams’ submitted choices needed to be approved by the TA
and instructor in order to ensure the system appeared to meet the
above criteria. All selected projects did so for size and repository
activity, however one team was denied their initial selected choice
of project (FastJson) on the grounds that it was too similar to the
JSON-Java system that all students had studied extensively in the
Programming Styles course in the previous quarter.

Week 3: Mental models and simulation. The third week in-
troduced the topics of mental models and mental simulations –
the fact that, while we work to understand some code, we build
a picture in our mind of its various pieces as well as how those
pieces work together to accomplish some functionality [15, 27].
The mental model is the static part; the mental simulation is the
envisioned execution under imagined circumstances. While every
developer engages in mental models and simulations, what sets
effective developers apart is that they intentionally think about
their models, how they construct them, what parts of the code are
in (and out, and why), and what kinds of executions they use to
essentially ‘test’ their mental models for completeness, accuracy,
and more.

The practical in-class component was designed to make the un-
seen thoughts processes seen with the help of JPacMan. First, we
asked the students to draw amodel of where scoring is implemented
(static). Then, we asked them how scoring works (dynamic), which
caused them to reassess the static model and add important detail.
Third, we asked them to co-develop the static and dynamic model
by asking how collisions work. Reflection with the instructor after
each task focused on the utility of the models drawn: to what de-
gree do they represent the true understanding in one’s head and to
what degree do they truly illustrate what is happening in the code?
Inevitably, during these discussions the students start to realize
shortcomings in their understandings.
The assignment for the week built upon the lecture by tasking

students with identifying a simple feature in their system and draw-
ing a model of how that feature works. We first asked students
to do so alone, and then asked the team to combine its findings.
This led to significant clarification and learning among the team
members and also illustrated the valuable lesson that bringing to-
gether divergent thoughts from different minds can be extremely
beneficial.

Week 4: Externalizing mental models. Building on the topic
of mental models and simulation, week 4 introduced the general
concept of modeling languages and the specifics of one of those,
UML class and sequence diagrams.2 The lecture focused on intro-
ducing UML syntax, with the help of several of the plug-ins that we
mentioned in Section 5.2. The primary goal was to instill a sense
of code understanding and navigation at a higher level of abstrac-
tion than individual lines of code, with UML class and sequence
diagrams serving as roadmaps for exploration. We used JPacMan
to show that these kinds of visual representations can be a pow-
erful source of insight into the system under study, even without
reading the code: what higher level components exist, how are they
connected, and what might be the control and data flows overall
that can be inferred?
As the assignment, the teams had to use the tools to create a

UML diagram of their entire system (to get a graphical sense of size
and scope), mark on the UML diagram where two newly chosen
features were implemented, and, under the hypothetical scenario
that those features would need to undergo some change to be
made by someone else, prepare roadmaps of the features that help
someone understand them. This represented a challenge to the
teams, as they had to think about what would and what would
not make sense to share, and at what level. Most teams eventually
understood that what was needed was a higher-level introduction
to the feature and how it worked; this, of course, required them to
nonetheless understand the code in detail, so to be able to describe
the higher level workings.

Week 5: Social context.Week 5 switched gears from actively
working with code to understanding its broader context. We in-
troduced social context as “the specific circumstance or general
environment that serves as a social framework for individual or
interpersonal behavior” [3]. In other words, contributing to any
software project requires one to work with other people and, thus,

2We focused on these two types of diagrams because they can be especially useful
in the context of the kinds of changes the students make, which remain fairly small
compared to, say, a major architectural refactoring. Moreover, class and sequence
diagrams can be automatically produced by tools.



Reading to Write Code: An Experience Report
of a Reverse Engineering and Modeling Course ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

to understand their culture in terms of formal work processes and
informal ways of interaction. As the interactive component of this
lecture, we asked the students two questions: (1) how would you
find out about the state of project / what kind of indicators might
you look at, and (2) imagine you are a core developer on a project,
what would you like to see in the pull requests that come your
way? It is particularly this second question that led to significant
discussion, with the students realizing there is a lot more to it than
just producing some code for an issue. The lecture also touched
upon key rules of thumb, such as to respect the wisdom embedded
in old code, to always verify assumptions when modifying code, to
leave the code in a better place than you found it, and so on.

The assignment was for the team to determine the social context
by answering a set of twenty-six standard questions. Among others,
questions included: what is the number of accepted pull requests
over the past month, howmany open issues are there today, is there
a development forum and if so how responsive are the maintainers,
does it appear that the documentation is up-to-date and how do you
know, does the project follow any coding conventions, what have
been some comments on recent pull requests that were initially
rejected, and what are the expectations for submitting test cases
along with your code updates? The team also had to select three
issues that they could work on next. We again followed a two-stage
process: they first had to choose three issues individually and then
come together as a team to discuss and select the three (from all
identified) they felt would suitably challenge them.

Week 6: Midterm.Week 6 was the midterm, which consisted of
questions about the theory presented in the prior weeks and asked
them to apply the techniques we had introduced in the lectures on
small snippets of code. We do not further discuss the midterm for
space reasons.

Week 7: Design patterns. In week 7 we switched back to code
and introduced design patterns, a topic that we knew was of great
interest to the students. The lecture explained the history of design
patterns (more broadly and in software) and then introduced the
original catalogue of patterns by Gamma et al. [20]. Two patterns
were explained in detail and, after each explanation, random student
teams were to locate those patterns in the JPacMan code. A third
exercise asked them to consider whether a part of the code should
be refactored into a design pattern.

The assignment was for the students to locate five different and
non-trivial (i.e., not Singleton) design patterns in their system. This
exercise leverages the fact that the students are already quite fa-
miliar with their code base and therefore can focus on learning
to recognize patterns through reading the code. This task is rel-
atively easy to perform through some trial-and-error searching,
assuming the system uses proper naming conventions (which most
open source systems tend to do). Rather than teaching them an
exhaustive list of patterns, we thus allow them to gain experience
in utilizing and studying external resources (i.e., documentation
on patterns other than the ones discussed in lecture), which helps
prepare the students for their upcoming summer internships, in
which they frequently apply similar skills (i.e., there too they need
to consult web pages with API documentation, YouTube videos,
Stack Overflow, and other resources to find what they need to
know [30]).

They had to also assess whether the patterns were followed
faithfully and they had to write up why they thought the developers
used each of the patterns (note that for this exercise they could
choose design patterns beyond the original 23 from Gamma et al.).
Additionally, the team was to code up the first issue and submit
a pull request for it. All teams succeeded in submitting such a
request. That said, despite the pull requests typically being very
small in touching merely a few lines of code, most were returned
with comments by the maintainers. As an example, a maintainer of
JMonkeyEngine wrote:

The comments say that an ArrayIndexOutOfBoundEx-
ception is thrown, but that’s no longer true.

Unit numbers start from 0, so the if (unit >= 17) test
appears to be off by one. Have you tested this code?

..

To demonstrate how this PR [pull request] would work
in practice, I think it should include a test case of a ma-
terial with 17 textures. Test cases can be added to the
jme3-examples subproject.

These and other comments like it served, in our next lecture, as
the anchor for a discussion revisiting social context and expecta-
tions. Mistakes made across the board included not commenting
sufficiently, changes lacking test cases to demonstrate they worked,
wrapping multiple changes in a single pull request, and changes
not working for some edge cases – precisely the kinds of topics we
had talked about in week 5.

Week 8: Test cases. Although rarely thought of as such, test
cases can be a powerful source of understanding a code base, since
they specify what should and should not happen and can be traced
through the source code to understand where what functionality
is implemented. Leveraging the fact that students already were fa-
miliar with JUnit from the Software Testing and Debugging course,
this lecture reviewed the topic and then asked students to practice
reading test cases and the code to which they map to understand
aspects of JPacMan (as already discussed in Section 5.2).

Teams were tasked with the homework of writing three test cases
and submitting each as a separate pull request. This allowed them to
once again practice interacting with the community. Interestingly,
the submission of new test cases was generally appreciated by the
maintainers, even though some did send feedback to improve the
test cases in one way or another. Teams also had to start working on
the final two (adjusted from three as initially planned) issues that
they were going to submit as pull requests; these had to be approved
by the TA and instructor, so to ensure sufficient complexity.

Week 9: Design cycle and principles. In week 9 we discussed
how to navigate making larger changes that require serious upfront
consideration of what the best way forward may be. We introduced
the design cycle of analyze–synthesize–evaluate as a way of engag-
ing in principled design thinking and exploration of options. As a
complementary topic, we talked about design principles, particu-
larly focusing on SOLID [29] as a means to strive for changes that
maintain a high level of code quality.



ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek

As the practical component, we switched from JPacMan to the
students designing a mini traffic simulator on Jamboard. This, as
we shall see in Section 6, was not the best pedagogical choice as
students ended up being bogged down in understanding a new
domain and design prompt. This caused lecture 10 to have to revisit
material that we thought we would be able to cover in just lecture
9. We should have asked them to design a change to JPacMan.
As homework, the teams had to model a new feature for their

system by documenting the existing state of the software, identify-
ing how and where the impact would be, and discussing why they
would go about making the change in the way they proposed.

Week 10: Design principles (revisited) and history. Week
10 was to be a lecture about source code history and how it can
be an important asset when it comes to understanding the latest
state of the code. We wanted the students to learn how they could
identify who had worked on the code before (so in their professional
lives they would be able to find out whom to reach out to when
so needed), how to read the version history in terms of branches,
merges, and pull requests, and how to go back in time to understand
why a certain piece of code is shaped like it is. The JPacMan project
has exemplary history that could be used to illustrate. Unfortunately,
as we discussed, we needed to revisit design principles, which took
most of the time of this lecture.
The final assignment was for the team to complete coding and

submit pull requests for the final two pull requests. Reception of
these pull requests was similarly mixed as for the earlier ones,
with a few being accepted and a good number receiving comments
from the maintainers. Unfortunately, by the time some of those
comments arrived, the quarter had ended and most teams (despite
ourmessaging that these would be important resume items) stopped
working on the pull requests if the feedback appeared to involve
more work than they were prepared to do of their own free will.

Week 11: (Optional) final. The course had an optional final for
those who wished to improve their grades; the final was structured
in the same way as the midterm.

6 REFLECTION
As with the first incarnation of the course, we have spent consider-
able time reflecting on this second offering so to be able to further
improve the course when we teach it next in Spring 2022. Below,
we first sample the reactions from the students and then offer our
thoughts as to what went well, what did not go well, what we do
not know yet, and what our plans are for Spring 2022.

6.1 What The Students Said
We issued a short survey to the students over the Summer following
the course, during their internship. Among a few other questions,
we asked them whether they were using any of what they learned
in class in the internship, what aspects of the class they valued the
most, how they felt they had personally improved as a result of the
course, and what else they would like to see covered. One fourth of
the students replied.
Many students reported having used strategies and techniques

from the course to read and understand code in their internship.
What they used varied and spanned nearly the entire set of topics.
One student highlighted “I also took a look at unit tests to better

understand the purpose of various functions” Another answered “PR
etiquette and navigation knowledge.” A third mentioned “I made
diagrams during my internship so learning UML, etc really helped.”
In terms of most important lessons, how to read code and pat-

terns were the two most frequently mentioned. One of the students
said “not being afraid to contribute to the code before understanding
the whole code base”, which aligns squarely with our overall goal
of lessening the fear. Another mentioned “how much reading as
opposed to writing is necessary” and a few others commented on
UML. These answers align well with how the students ranked their
personal improvement, with their ability to understand and work
within the social context of a large-scale software system and ability
to make a code contribution to a large-scale software system being
seen as the areas where they advanced the most.

Many students mentioned that having only one lecture to become
familiar with design patterns was insufficient (e.g., “More detail on
design patterns for sure. We only went in depth on one or two, but I
would like to go in depth about more”, “I hope we could spend more
time on the design pattern”, “Design Patterns. I have been running
into Design Pattern questions a TON during interviews”). They also
commented that they would like to hear from guest speakers about
how they have handled challenging situations in the past (e.g., “Bug
fixing? I’d like to see some guest speaker talk about their experience in
dealing with some high priority defect ticket under serious pressures”).
Finally, they did not think the exams were particularly useful from
a learning perspective (e.g., “Maybe exams could be optional or only
for students who need extra credit”).

From informally talking to the students, we learned of two other
pervasive thoughts. First, they valued the introduction of the ad-
vanced IntelliJ functionality and plug-ins; many simply did not
know and felt like they were now able to more effectively perform
their work. Second, they did not like having to fill out the diaries
each week. From an instructor perspective, however, these diaries
allowed us to monitor how well individual teams did or did not
work together, sometimes intervening. Moreover, what the students
put down as new insights they learned from their activities allowed
us to monitor whether the material resonated and was translated
by the students into practice. We, thus, intend to keep the diaries.

6.2 What We Thought
Overall, we were much happier with this incarnation of the course
as compared to its initial offering. Other than the complication that
arose in week 9 regarding design principles and the use of a new
design prompt, which necessitated bleeding a lot of material into
week 10, the first eight weeks and the practical components of the
course worked very well. To avoid the issue next time, we fully
intend to no longer employ a midterm, spread out the design cycle
and design principles materials over two weeks, and conclude the
course with a proper lecture on history. We also envision revisiting
the design patterns when we talk about the design principles, so
that the students gain some more exposure. We realize the normal
order is the reverse (principles first, then patterns), but given that
we treat the topics from a reading to write perspective, patterns
first and then principles fits better with the flow.

An important component was setting the expectations early and
not low. The first offering of the course culminated in a voluntary



Reading to Write Code: An Experience Report
of a Reverse Engineering and Modeling Course ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA

submission of a single pull request, but this did not give the stu-
dents a good experience they can put on their resume. By moving
topics around (particularly the social context lecture, which we
moved much earlier), inserting an explicit step of selecting issues
to work on, and making it clear from the beginning of the course
that they would be making changes to the code base that would
result in actual pull requests, we feel that the result was much more
satisfying to the students. While one student commented “Repo
owners are extremely picky”, we actually take that as an important
lesson learned, because it will be no different in their future careers.
The community at large also served an important role. On the

one hand, we had the aforementioned voracious maintainer who
addressed and closed all issues near instantly, leaving nothing for
the students (we worked around this by asking the team to work
on a proposed new feature of their own thinking instead) and some
of the pull requests simply did not get any feedback, presumably
because the the maintainers were busy with other, higher priority
items. On one project the team submitted several pull requests that
unfortunately became obsolete when a major new release came out
a few days later that involved significant refactoring that eliminated
the open issues altogether.

At the same time, on a number of occasions it was clear that the
maintainers took care of coaching the newcomers, encouraging
them in their work, and giving them friendly feedback that often
involved a “here is how to do this right”. On a few occasions, too,
teams received a congratulatory message on submitting their first
pull request to a project. Overall, the diversity of experiences served
as a rich base for the course at large – we could draw upon this
diversity in teaching all students lessons they would otherwise not
encounter in their own projects.

Another form of community served an equally important role: the
community that has developed, curated, and published numerous
valuable resources on which a course like ours can rely. Patterns,
UML, and SOLID have a number of outstanding web sites dedicated
to them, which made it possible for us to lay the foundations, but
then redirect the students to learn more on their own, as they
undoubtedly will need to do in their future careers as well.
The inclusion of guest speakers from industry enriched the

course. While each highlighted different aspects of reading (and
writing) code, their stories and experiences connected closely with
the material that the students had been studying. The Google engi-
neer performing an actual code review was a particularly strong
addition, as was the exercise of reverse engineering the Lua soft-
ware defined radio, which the guest speaker did by serving as the
master teacher who enabled the students to perform the work under
their guidance. That said, a few of the guest speakers could benefit
from organizing their message more clearly, perhaps with the help
of slides. We will more proactively coach the guest speakers in that
regard the next time around.

A particularly challenging issue is the selection of projects. We in-
tentionally ensured that teams grouped around areas of interest, so
that they would be more motivated to engage with the open source
project of their choice. That said, there naturally exists a variability
in the projects, the quality of their code, their documentation, their
complexities hiding in the code, and their engagement with the
community. While the TAs and instructor do take a look at the
projects that teams want to study before they do so (e.g., to ensure

sufficient churn, enough open issues, some basic level of quality,
reasonably active community), this remains an inexact science and
we were faced with a few surprises, as discussed. While this on the
one hand enhanced the breadth of the educational experience for
the class at large, it also meant that some inequities existed in the
challenges that different teams will face, as well as inequities in the
potential for them to have had their pull requests accepted towards
the end of the quarter. We have not found a good way for us to
account for this variability while still preserving the positives of
a breadth of projects being worked on in class, other than being
flexible in coming up with alternative ways of satisfying certain
assignments.

Finally, we continue to ponder the sequence of the lectures.While
we feel we have arrived at a good order, there always is the desire
to move an important topic from later earlier (e.g., move patterns
earlier given how important they are in practice). That, however, al-
ways means another topic has to go later. Whether a better ordering
exists than the one we have currently remains an unknown.

7 CONCLUSION
This experience report shared our design and delivery of a novel
course that prepares students to read code in order to write code,
together with reflections on what we felt went well and what could
use improvement. The course design is directly influenced by the
eight desired learning outcomes, though we note that it is a chal-
lenge to objectively assess the degree to which those learning out-
comes have been met. Nonetheless, we believe the course is on the
right track: students report using the strategies and techniques in
their internships, they generally appear content with the materials
of the course, they showed engagement in the in-class exercises,
and they succeeded in making actual contributions to open source
systems. That said, improvements can be made and we plan to do
so as outlined in the above for the third offering of the course in
Spring 2022. We hope this paper inspires others to offer similar
kinds of courses as we believe a serious gap exists when it comes
to graduates knowing how to read to write code.

Course materials, including slides and assignments, are available
upon request.

REFERENCES
[1] [n. d.]. Git. https://git-scm.com/
[2] 2019. Master of Software Engineering (MSE). https://mswe.ics.uci.edu/
[3] 2020. APA Dictionary of Psychology. https://dictionary.apa.org/social-context
[4] 2022. Call Graph - IntelliJ IDEs Plugin | Marketplace. https://plugins.jetbrains.

com/plugin/12304-call-graph
[5] 2022. SequenceDiagram - IntelliJ IDEA & Android Studio Plugin | Marketplace.

https://plugins.jetbrains.com/plugin/8286-sequencediagram
[6] 2022. Statistic - IntelliJ IDEs Plugin | Marketplace. https://plugins.jetbrains.com/

plugin/4509-statistic
[7] Eric Allen, Robert Cartwright, and Charles Reis. 2003. Production programming

in the classroom. In Proceedings of the 34th SIGCSE technical symposium on
Computer science education (SIGCSE ’03). Association for Computing Machinery,
New York, NY, USA, 89–93. https://doi.org/10.1145/611892.611940

[8] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco Au-
relio Gerosa. 2018. Newcomers’ Barriers. . . Is That All? An Analysis of Mentors’
and Newcomers’ Barriers in OSS Projects. Computer Supported Cooperative Work
(CSCW) 27, 3 (Dec. 2018), 679–714. https://doi.org/10.1007/s10606-018-9310-8

[9] Andrew Begel and Beth Simon. 2008. Novice software developers, all over again.
In Proceedings of the Fourth international Workshop on Computing Education
Research (ICER ’08). Association for Computing Machinery, New York, NY, USA,
3–14. https://doi.org/10.1145/1404520.1404522

https://git-scm.com/
https://mswe.ics.uci.edu/
https://dictionary.apa.org/social-context
https://plugins.jetbrains.com/plugin/12304-call-graph
https://plugins.jetbrains.com/plugin/12304-call-graph
https://plugins.jetbrains.com/plugin/8286-sequencediagram
https://plugins.jetbrains.com/plugin/4509-statistic
https://plugins.jetbrains.com/plugin/4509-statistic
https://doi.org/10.1145/611892.611940
https://doi.org/10.1007/s10606-018-9310-8
https://doi.org/10.1145/1404520.1404522


ICSE-SEET ’22, May 21–29, 2022, Pittsburgh, PA, USA Brooke Ryan, Adriana Meza Soria, Kaj Dreef and André van der Hoek

[10] T. Busjahn and Carsten Schulte. 2013. The use of code reading in teaching
programming. In Koli Calling ’13. https://doi.org/10.1145/2526968.2526969

[11] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. 2011. Analysis of code
reading to gain more insight in program comprehension. In Proceedings of the
11th Koli Calling International Conference on Computing Education Research (Koli
Calling ’11). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/2094131.2094133

[12] José P. Cambronero, Thurston H. Y. Dang, Nikos Vasilakis, Jiasi Shen, Jerry
Wu, and Martin C. Rinard. 2019. Active learning for software engineering. In
Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! 2019).
Association for Computing Machinery, New York, NY, USA, 62–78. https://doi.
org/10.1145/3359591.3359732

[13] Cynthia L. Corritore and Susan Wiedenbeck. 2001. An exploratory study of
program comprehension strategies of procedural and object-oriented program-
mers. International Journal of Human-Computer Studies 54, 1 (Jan. 2001), 1–23.
https://doi.org/10.1006/ijhc.2000.0423

[14] Mohsen Dorodchi, Erfan Al-Hossami, Mohammad Nagahisarchoghaei, Ro-
hit Shenvi Diwadkar, and Aileen Benedict. 2019. Teaching an Undergraduate
Software Engineering Course using Active Learning and Open Source Projects.
In 2019 IEEE Frontiers in Education Conference (FIE). IEEE, Covington, KY, USA,
1–5. https://doi.org/10.1109/FIE43999.2019.9028517

[15] Alberto Espinosa, Robert Kraut, Javier Lerch, Sandra Slaughter, James Herbsleb,
and Audris Mockus. 2001. Shared Mental Models and Coordination in Large-
Scale, Distributed Software Development. ICIS 2001 Proceedings (Dec. 2001).
https://aisel.aisnet.org/icis2001/64

[16] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. 2013. An Information Foraging
Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks. ACM
Transactions on Software Engineering and Methodology 22, 2 (March 2013), 14:1–
14:41. https://doi.org/10.1145/2430545.2430551

[17] Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis,
Mirella Lapata, and Charles Sutton. 2016. TASSAL: Autofolding for Source Code
Summarization. In 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion (ICSE-C). 649–652.

[18] Thomas Fritz and Sebastian Muller. 2016. Leveraging Biometric Data to Boost
Software Developer Productivity. 66–77. https://doi.org/10.1109/SANER.2016.107

[19] Richard P. Gabriel. [n. d.]. Master of Fine Arts in Software. https://dreamsongs.
com/MFASoftware.html

[20] Erich Gamma, Ralph Johnson, Richard Helm, Ralph E. Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-Oriented Software. Pearson
Deutschland GmbH. Google-Books-ID: tmNNfSkfTlcC.

[21] Thomas B. Hilburn, Massood Towhidnejad, and Salamah Salamah. 2011. Read
before you write. In 2011 24th IEEE-CS Conference on Software Engineering Educa-
tion and Training (CSEE T). 371–380. https://doi.org/10.1109/CSEET.2011.5876108
ISSN: 2377-570X.

[22] Anna A Ivanova, Shashank Srikant, Yotaro Sueoka, Hope H Kean, Riva Dhamala,
Una-May O’Reilly, Marina U Bers, and Evelina Fedorenko. 2020. Comprehension
of computer code relies primarily on domain-general executive brain regions.
eLife 9 (Dec. 2020), e58906. https://doi.org/10.7554/eLife.58906 Publisher: eLife
Sciences Publications, Ltd.

[23] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering (ASE
’05). Association for Computing Machinery, New York, NY, USA, 273–282.
https://doi.org/10.1145/1101908.1101949

[24] An Ju, Hitesh Sajnani, Scot Kelly, and Kim Herzig. 2021. A case study of onboard-
ing in software teams: Tasks and strategies. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 613–623.

[25] Zachary Karas, Andrew Jahn, Westley Weimer, and Yu Huang. 2021. Connecting
the dots: rethinking the relationship between code and prose writing with func-
tional connectivity. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2021). Association for Computing Machinery, New York,
NY, USA, 767–779. https://doi.org/10.1145/3468264.3468579

[26] Stephen King. 2010. On writing: a memoir of the craft (scribner trade paperback
edition ed.). Scribner, New York.

[27] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering (ICSE ’06). Association for Computing Ma-
chinery, New York, NY, USA, 492–501. https://doi.org/10.1145/1134285.1134355

[28] Jochen Ludewig and Ivan Bogicevic. 2012. Teaching software engineering with
projects. In 2012 First International Workshop on Software Engineering Education
Based on Real-World Experiences (EduRex). 25–28. https://doi.org/10.1109/EduRex.
2012.6225701

[29] Donis Marshall and John Bruno. 2009. Solid Code. Microsoft Press. Google-
Books-ID: ZZtCAwAAQBAJ.

[30] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2019. How devel-
opers use API documentation: an observation study. Communication Design
Quarterly 7, 2 (Aug. 2019), 40–49. https://doi.org/10.1145/3358931.3358937

[31] André N. Meyer, Earl T. Barr, Christian Bird, and Thomas Zimmermann. 2021.
TodayWas a Good Day: The Daily Life of Software Developers. IEEE Transactions
on Software Engineering 47, 5 (May 2021), 863–880. https://doi.org/10.1109/TSE.
2019.2904957 Conference Name: IEEE Transactions on Software Engineering.

[32] Tahmid Nabi, KyleM. D. Sweeney, Sam Lichlyter, David Piorkowski, Chris Scaffidi,
Margaret Burnett, and Scott D. Fleming. 2016. Putting information foraging
theory to work: Community-based design patterns for programming tools. In 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
129–133. https://doi.org/10.1109/VLHCC.2016.7739675 ISSN: 1943-6106.

[33] Debora M. C. Nascimento, Christina F. G. Chavez, and Roberto A. Bittencourt.
2018. The Adoption of Open Source Projects in Engineering Education: A Real
Software Development Experience. In 2018 IEEE Frontiers in Education Conference
(FIE). 1–9. https://doi.org/10.1109/FIE.2018.8658908 ISSN: 2377-634X.

[34] Marian Petre and André van der Hoek. 2016. Software Design Decoded: 66 Ways
Experts Think. MIT Press. Google-Books-ID: EVE4DQAAQBAJ.

[35] Wendy Pothier. 2021. Jamming Together: Concept Mapping in the Pandemic
Classroom. Ticker: The Academic Business Librarianship Review 5, 2 (March 2021).
https://doi.org/10.3998/ticker.16481003.0005.220

[36] Darrell R. Raymond. 1991. Reading source code. In Proceedings of the 1991
conference of the Centre for Advanced Studies on Collaborative research (CASCON
’91). IBM Press, Toronto, Ontario, Canada, 3–16.

[37] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
do professional developers comprehend software?. In 2012 34th International
Conference on Software Engineering (ICSE). 255–265. https://doi.org/10.1109/
ICSE.2012.6227188 ISSN: 1558-1225.

[38] Janet Siegmund. 2016. Program Comprehension: Past, Present, and Future. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 5. 13–20. https://doi.org/10.1109/SANER.2016.35

[39] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering
Questions during a Programming Change Task. IEEE Transactions on Software
Engineering 34, 4 (July 2008), 434–451. https://doi.org/10.1109/TSE.2008.26 Con-
ference Name: IEEE Transactions on Software Engineering.

[40] Therese Mary Smith, Robert McCartney, Swapna S. Gokhale, and Lisa C. Kaczmar-
czyk. 2014. Selecting open source software projects to teach software engineering.
In Proceedings of the 45th ACM technical symposium on Computer science educa-
tion (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA,
397–402. https://doi.org/10.1145/2538862.2538932

[41] Diomidis Spinellis. 2003. Code Reading: The Open Source Perspective. Addison-
Wesley Professional. Google-Books-ID: 8lYbNfsAVT4C.

[42] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. 2015.
Social Barriers Faced by Newcomers Placing Their First Contribution in Open
Source Software Projects. In Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing (CSCW ’15). Association for
Computing Machinery, New York, NY, USA, 1379–1392. https://doi.org/10.1145/
2675133.2675215

[43] Igor Steinmacher, Marco Aurélio Graciotto Silva, and Marco Aurelio Gerosa. 2014.
Barriers Faced by Newcomers to Open Source Projects: A Systematic Review,
Vol. 427. https://doi.org/10.1007/978-3-642-55128-4_21

[44] Arie Van Deursen, Maurício Aniche, Joop Aué, Rogier Slag, Michael De Jong, Alex
Nederlof, and Eric Bouwers. 2017. A Collaborative Approach to Teaching Soft-
ware Architecture. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). Association for Computing Machinery,
New York, NY, USA, 591–596. https://doi.org/10.1145/3017680.3017737

[45] Richard Wettel and Michele Lanza. 2008. CodeCity: 3D visualization of large-
scale software. In Companion of the 30th international conference on Software
engineering (ICSE Companion ’08). Association for Computing Machinery, New
York, NY, USA, 921–922. https://doi.org/10.1145/1370175.1370188

[46] D. W. H. Wilmer, G. R. De Ridder, A. A. Kol, and D. C. Harkes. 2010. Pacman. Tech-
nical Report. https://repository.tudelft.nl/islandora/object/uuid%3A8bc685df-
fcf4-4ed8-8ef3-a11e75f82c76

https://doi.org/10.1145/2526968.2526969
https://doi.org/10.1145/2094131.2094133
https://doi.org/10.1145/3359591.3359732
https://doi.org/10.1145/3359591.3359732
https://doi.org/10.1006/ijhc.2000.0423
https://doi.org/10.1109/FIE43999.2019.9028517
https://aisel.aisnet.org/icis2001/64
https://doi.org/10.1145/2430545.2430551
https://doi.org/10.1109/SANER.2016.107
https://dreamsongs.com/MFASoftware.html
https://dreamsongs.com/MFASoftware.html
https://doi.org/10.1109/CSEET.2011.5876108
https://doi.org/10.7554/eLife.58906
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/3468264.3468579
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1109/EduRex.2012.6225701
https://doi.org/10.1109/EduRex.2012.6225701
https://doi.org/10.1145/3358931.3358937
https://doi.org/10.1109/TSE.2019.2904957
https://doi.org/10.1109/TSE.2019.2904957
https://doi.org/10.1109/VLHCC.2016.7739675
https://doi.org/10.1109/FIE.2018.8658908
https://doi.org/10.3998/ticker.16481003.0005.220
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/SANER.2016.35
https://doi.org/10.1109/TSE.2008.26
https://doi.org/10.1145/2538862.2538932
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1007/978-3-642-55128-4_21
https://doi.org/10.1145/3017680.3017737
https://doi.org/10.1145/1370175.1370188
https://repository.tudelft.nl/islandora/object/uuid%3A8bc685df-fcf4-4ed8-8ef3-a11e75f82c76
https://repository.tudelft.nl/islandora/object/uuid%3A8bc685df-fcf4-4ed8-8ef3-a11e75f82c76

	Abstract
	1 Introduction
	2 Background
	3 Context
	4 Learning Outcomes
	5 Course Design
	5.1 Overall Pedagogy
	5.2 Basic Structure of Each Lecture
	5.3 Week-by-Week Topics

	6 Reflection
	6.1 What The Students Said
	6.2 What We Thought

	7 Conclusion
	References

